PROBLEM 3-2

Statement:	Design a fourbar ((See Example 3-1 transmission angle	sign a fourbar Grashof crank-rocker for 90 deg of output rocker motion with no quick return. ee Example 3-1.) Build a cardboard model and determine the toggle positions and the minimum nsmission angle.				
Given:	Output angle	$\theta_4 := 90 \cdot deg$				
Solution:	See Example 3-1 and Mathcad file P0302.					
Design choice	s: Link lengt	hs: Link 3	$L_3 := 6.000$	Link 4	$L_4 := 2.500$	

- 1. Draw the output link O_4B in both extreme positions, B_1 and B_2 , in any convenient location such that the desired angle of motion θ_4 is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical.
- 2. Draw the chord B_1B_2 and extend it in any convenient direction. In this solution it was extended to the left.
- 3. Layout the distance A_1B_1 along extended line B_1B_2 equal to the length of link 3. Mark the point A_1 .
- 4. Bisect the line segment B_1B_2 and layout the length of that radius from point A_1 along extended line B_1B_2 . Mark the resulting point O_2 and draw a circle of radius O_2A_1 with center at O_2 .
- 5. Label the other intersection of the circle and extended line B_1B_2 , A_2 .
- 6. Measure the length of the crank (link 2) as O_2A_1 or O_2A_2 . From the graphical solution, $L_2 := 1.76775$
- 7. Measure the length of the ground link (link 1) as O_2O_4 . From the graphical solution, $L_1 := 6.2550$

8. Find the Grashof condition.

$$Condition(a, b, c, d) \coloneqq S \leftarrow min(a, b, c, d)$$

$$L \leftarrow max(a, b, c, d)$$

$$SL \leftarrow S + L$$

$$PQ \leftarrow a + b + c + d - SL$$

$$return "Grashof" if SL < PQ$$

$$return "Special Grashof" if SL = PQ$$

$$return "non-Grashof" otherwise$$

 $Condition(L_1, L_2, L_3, L_4) = "Grashof"$

PROBLEM 3-6

Statement: Design a fourbar mechanism to give the three positions shown in Figure P3-2 using the fixed pivots O_2 and O_4 shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.

Solution: See Figure P3-2 and Mathcad file P0306.

Design choices:

Length of link 5: $L_5 := 5.000$ Length of link 2b: $L_{2b} := 2.000$

- 1. Draw link *CD* in its three design positions C_1D_1 , C_2D_2 , C_3D_3 in the plane as shown.
- 2. Draw the ground link O_2O_4 in its desired position in the plane with respect to the first coupler position C_1D_1 .
- 3. Draw construction arcs from point C_2 to O_2 and from point D_2 to O_2 whose radii define the sides of triangle $C_2O_2D_2$. This defines the relationship of the fixed pivot O_2 to the coupler line *CD* in the second coupler position.
- 4. Draw construction arcs from point C_2 to O_4 and from point D_2 to O_4 whose radii define the sides of triangle $C_2O_4D_2$. This defines the relationship of the fixed pivot O_4 to the coupler line *CD* in the second coupler position.
- 5. Transfer this relationship back to the first coupler position C_1D_1 so that the ground plane position $O_2'O_4'$ bears the same relationship to C_1D_1 as O_2O_4 bore to the second coupler position C_2D_2 .
- 6. Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
- 7. The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled $O_2O_4, O_2'O_4'$, and $O_2"O_4"$ in the first layout below and are renamed E_1F_1, E_2F_2 , and E_3F_3 , respectively, in the second layout, which is used to find the points *G* and *H*.

8. Draw construction lines from point E_1 to E_2 and from point E_2 to E_3 .

DESIGN OF MACHINERY

- 9. Bisect line E_1E_2 and line E_2E_3 and extend their perpendicular bisectors until they intersect. Label their intersection *G*.
- 10. Repeat steps 2 and 3 for lines F_1F_2 and F_2F_3 . Label the intersection H.
- 11. Connect E_1 with G and label it link 2. Connect F_1 with H and label it link 4. Reinverting, E_1 and F_1 are the original fixed pivots O_2 and O_4 , respectively.
- 12. Line *GH* is link 3. Line O_2O_4 is link 1a (ground link for the fourbar). The fourbar is now defined as O_2GHO_4 and has link lengths of

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

$$Condition(a, b, c, d) \coloneqq S \leftarrow min(a, b, c, d)$$

$$L \leftarrow max(a, b, c, d)$$

$$SL \leftarrow S + L$$

$$PQ \leftarrow a + b + c + d - SL$$

$$return "Grashof" if SL < PQ$$

$$return "Special Grashof" if SL = PQ$$

$$return "non-Grashof" otherwise$$

 $Condition(L_{1a}, L_2, L_3, L_4) = "Grashof"$

The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C_1 and D_1 to the coupler *GH* and to define the driving dyad.

- 14. Select a point on link 2 (O_2G) at a suitable distance from O_2 as the pivot point to which the driver dyad will be connected and label it *B*. (Note that link 2 is now a ternary link with nodes at O_2 , *B*, and *G*.) In the solution below, the distance O_2B was selected to be $L_{2b} = 2.000$.
- 15. Draw a construction line through B_1B_3 and extend it up to the right.
- 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A.
- 17. Draw a circle about O_6 with a radius of one-half the length B_1B_3 and label the intersections of the circle with the extended line as A_1 and A_3 . In the solution below the radius was measured as $L_6 = 0.412$.
- 18. The driver fourbar is now defined as O_2BAO_6 with link lengths

Link 6 (crank) $L_6 = 0.412$ Link 5 (coupler) $L_5 = 5.000$ Link 1b (ground) $L_{1b} := 5.369$ Link 2b (rocker) $L_{2b} = 2.000$

19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6).

 $Condition(L_6, L_{1b}, L_{2b}, L_5) = "Grashof"$

PROBLEM 3-	7	
Statement:	Repeat Problem 3-2 with a quick-return time ratio of 1.14 (See Example 3.9). Design a fourbar	

Grashof crank-rocker for 90 degrees of output rocker motion with a quick-return time ratio of 1:1.4. (See Example 3.9). Design a fourbar

Given: Time ratio $T_r := \frac{1}{1 \ 4}$

Solution: See figure below for one possible solution. Also see Mathcad file P0307.

1. Determine the crank rotation angles α and β , and the construction angle δ from equations 3.1 and 3.2.

 $T_r = \frac{\alpha}{\beta} \qquad \qquad \alpha + \beta = 360 \cdot deg$ Solving for β , α , and δ $\beta := \frac{360 \cdot deg}{1 + T_r} \qquad \qquad \beta = 210 \ deg$ $\alpha := 360 \cdot deg - \beta \qquad \qquad \alpha = 150 \ deg$ $\delta := \beta - 180 \cdot deg \qquad \qquad \delta = 30 \ deg$

- 2. Start the layout by arbitrarily establishing the point O_4 and from it layoff two lines of equal length, 90 deg apart. Label one B_1 and the other B_2 . In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 2.000 in.
- 3. Layoff a line through B_1 at an arbitrary angle (but not zero deg). In the solution below, the line is 30 deg to the horizontal.
- 4. Layoff a line through B_2 that makes an angle δ with the line in step 3 (60 deg to the horizontal in this case). The intersection of these two lines establishes the point O_2 .
- 5. From O_2 draw an arc that goes through B_1 . Extend O_2B_2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O_2 as the length of the input crank.

6. For this solution, the link lengths are:

Ground link (1)	$d \coloneqq 3.0119 \cdot in$
Crank (2)	$a \coloneqq 1.0353 \cdot in$
Coupler (3)	$b \coloneqq 3.8637 \cdot in$
Rocker (4)	$c \coloneqq 2.000 \cdot in$

PROBLEM 3-67

Statement: Design a fourbar Grashof crank-rocker for 120 degrees of output rocker motion with a quick-return time ratio of 1:2. (See Example 3-9.)

Given: Time ratio $T_r := \frac{1}{2}$

Solution: See figure below for one possible solution. Also see Mathcad file P0367.

1. Determine the crank rotation angles α and β , and the construction angle δ from equations 3.1 and 3.2.

	$T_r = \frac{\alpha}{\beta}$	$\alpha + \beta = 360 \cdot deg$
Solving for β , α , and δ	$\beta := \frac{360 \cdot deg}{1 + T_r}$	$\beta = 240 \ deg$
	$\alpha := 360 \cdot deg - \beta$	$\alpha = 120 \ deg$
	$\delta \coloneqq \beta - 180 \cdot deg$	$\delta = 60 deg$

- 2. Start the layout by arbitrarily establishing the point O_4 and from it layoff two lines of equal length, 120 deg apart. Label one B_1 and the other B_2 . In the solution below, each line makes an angle of 30 deg with the horizontal and has a length of 2.000 in.
- 3. Layoff a line through B_1 at an arbitrary angle (but not zero deg). In the solution below the line is 60 deg to the horizontal.
- 4. Layoff a line through B_2 that makes an angle δ with the line in step 3 (120 deg to the horizontal in this case). The intersection of these two lines establishes the point O_2 .
- 5. From O_2 draw an arc that goes through B_1 . Extend O_2B_2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O_2 as the length of the input crank.

6. For this solution, the link lengths are:

Ground link (1)	$d \coloneqq 2.000 in$	Coupler (3)	$b \coloneqq 2.9333 \cdot in$
Crank (2)	$a \coloneqq 0.5308 \cdot in$	Rocker (4)	$c \coloneqq 2.000 \cdot in$