PROBLEM 3-2

Statement: Design a fourbar Grashof crank-rocker for 90 deg of output rocker motion with no quick return. (See Example 3-1.) Build a cardboard model and determine the toggle positions and the minimum transmission angle.

Given: \quad Output angle $\quad \theta_{4}:=90 \cdot \mathrm{deg}$
Solution: \quad See Example 3-1 and Mathcad file P0302.
Design choices: Link lengths: Link $3 \quad L_{3}:=6.000 \quad \operatorname{Link} 4 \quad L_{4}:=2.500$

1. Draw the output link $O_{4} B$ in both extreme positions, B_{1} and B_{2}, in any convenient location such that the desired angle of motion θ_{4} is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical.
2. Draw the chord $B_{1} B_{2}$ and extend it in any convenient direction. In this solution it was extended to the left.
3. Layout the distance $A_{1} B_{1}$ along extended line $B_{1} B_{2}$ equal to the length of link 3. Mark the point A_{1}.
4. Bisect the line segment $B_{1} B_{2}$ and layout the length of that radius from point A_{1} along extended line $B_{1} B_{2}$. Mark the resulting point O_{2} and draw a circle of radius $O_{2} A_{1}$ with center at O_{2}.
5. Label the other intersection of the circle and extended line $B_{1} B_{2}, A_{2}$.
6. Measure the length of the crank (link 2) as $O_{2} A_{1}$ or $O_{2} A_{2}$. From the graphical solution, $L_{2}:=1.76775$
7. Measure the length of the ground link (link 1) as $O_{2} O_{4}$. From the graphical solution, $L_{1}:=6.2550$

8. Find the Grashof condition.

$$
\text { Condition }(a, b, c, d): \left\lvert\, \begin{aligned}
& S \leftarrow \min (a, b, c, d) \\
& L \leftarrow \max (a, b, c, d) \\
& S L \leftarrow S+L \\
& P Q \leftarrow a+b+c+d-S L \\
& \text { return "Grashof" if } S L<P Q \\
& \text { return "Special Grashof" if } S L=P Q \\
& \text { return "non-Grashof" otherwise }
\end{aligned}\right.
$$

$\operatorname{Condition}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=$ "Grashof"

PROBLEM 3-6

Statement: Design a fourbar mechanism to give the three positions shown in Figure P3-2 using the fixed pivots O_{2} and O_{4} shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.

Solution: See Figure P3-2 and Mathcad file P0306.

Design choices:

$$
\text { Length of link 5: } \quad L_{5}:=5.000 \quad \text { Length of link } 2 \mathrm{~b}: \quad L_{2 b}:=2.000
$$

1. Draw link $C D$ in its three design positions $C_{1} D_{1}, C_{2} D_{2}, C_{3} D_{3}$ in the plane as shown.
2. Draw the ground link $O_{2} O_{4}$ in its desired position in the plane with respect to the first coupler position $C_{1} D_{1}$.
3. Draw construction arcs from point C_{2} to O_{2} and from point D_{2} to O_{2} whose radii define the sides of triangle $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{D}_{2}$. This defines the relationship of the fixed pivot O_{2} to the coupler line $C D$ in the second coupler position.
4. Draw construction arcs from point C_{2} to O_{4} and from point D_{2} to O_{4} whose radii define the sides of triangle $C_{2} O_{4} D_{2}$. This defines the relationship of the fixed pivot O_{4} to the coupler line $C D$ in the second coupler position.
5. Transfer this relationship back to the first coupler position $C_{1} D_{1}$ so that the ground plane position $O_{2}{ }^{\prime} O_{4}{ }^{\prime}$ bears the same relationship to $C_{1} D_{1}$ as $O_{2} O_{4}$ bore to the second coupler position $C_{2} D_{2}$.
6. Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7. The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled $O_{2} O_{4}, O_{2}^{\prime} O_{4}^{\prime}$, and $O_{2}{ }^{\prime \prime} O_{4}^{\prime \prime}$ in the first layout below and are renamed $E_{1} F_{1}, E_{2} F_{2}$, and $E_{3} F_{3}$, respectively, in the second layout, which is used to find the points G and H.

8. Draw construction lines from point E_{1} to E_{2} and from point E_{2} to E_{3}.
9. Bisect line $E_{1} E_{2}$ and line $E_{2} E_{3}$ and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines $F_{1} F_{2}$ and $F_{2} F_{3}$. Label the intersection H.
11. Connect E_{1} with G and label it link 2. Connect F_{1} with H and label it link 4. Reinverting, E_{1} and F_{1} are the original fixed pivots O_{2} and O_{4}, respectively.
12. Line GH is link 3. Line $\mathrm{O}_{2} \mathrm{O}_{4}$ is link 1a (ground link for the fourbar). The fourbar is now defined as $\mathrm{O}_{2} \mathrm{GHO}_{4}$ and has link lengths of

Ground link 1a	$L_{1 a}:=4.303$	Link 2	$L_{2}:=8.597$
Link 3	$L_{3}:=1.711$	Link 4	$L_{4}:=7.921$

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

$$
\operatorname{Condition}(a, b, c, d):=\| \begin{aligned}
& S \leftarrow \min (a, b, c, d) \\
& L \leftarrow \max (a, b, c, d) \\
& S L \leftarrow S+L \\
& P Q \leftarrow a+b+c+d-S L \\
& \text { return "Grashof" if } S L<P Q \\
& \text { return "Special Grashof" if } S L=P Q \\
& \text { return "non-Grashof" otherwise }
\end{aligned}
$$

Condition $\left(L_{1 a}, L_{2}, L_{3}, L_{4}\right)=$ "Grashof"
The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C_{1} and D_{1} to the coupler $G H$ and to define the driving dyad.
14. Select a point on link $2\left(O_{2} G\right)$ at a suitable distance from O_{2} as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O_{2}, B, and G.) In the solution below, the distance $O_{2} B$ was selected to be $L_{2 b}=2.000$.
15. Draw a construction line through $B_{1} B_{3}$ and extend it up to the right.
16. Layout the length of link 5 (design choice) along the extended line. Label the other end A.
17. Draw a circle about O_{6} with a radius of one-half the length $B_{1} B_{3}$ and label the intersections of the circle with the extended line as A_{1} and A_{3}. In the solution below the radius was measured as $L_{6}:=0.412$.
18. The driver fourbar is now defined as $O_{2} B A O_{6}$ with link lengths

$$
\begin{array}{ll}
\text { Link } 6 \text { (crank) } & L_{6}=0.412 \\
\text { Link } 5 \text { (coupler) } & L_{5}=5.000 \\
\text { Link } 1 \mathrm{~b} \text { (ground) } & L_{1 b}:=5.369 \\
\text { Link } 2 \mathrm{~b} \text { (rocker) } & L_{2 b}=2.000
\end{array}
$$

19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6).

$$
\operatorname{Condition}\left(L_{6}, L_{1 b}, L_{2 b}, L_{5}\right)=\text { "Grashof" }
$$

PROBLEM 3-7

Statement: Repeat Problem 3-2 with a quick-return time ratio of 1:1.4. (See Example 3.9). Design a fourbar Grashof crank-rocker for 90 degrees of output rocker motion with a quick-return time ratio of 1:1.4.

Given: \quad Time ratio $\quad T_{r}:=\frac{1}{1.4}$
Solution: See figure below for one possible solution. Also see Mathcad file P0307.

1. Determine the crank rotation angles α and β, and the construction angle δ from equations 3.1 and 3.2.

$$
\begin{array}{lll}
& T_{r}=\frac{\alpha}{\beta} & \alpha+\beta=360 \cdot \mathrm{deg} \\
\text { Solving for } \beta, \alpha, \text { and } \delta & \beta:=\frac{360 \cdot d e g}{1+T_{r}} & \beta=210 \mathrm{deg} \\
& :=360 \cdot \mathrm{deg}-\beta & \alpha=150 \mathrm{deg} \\
& \delta:=\beta-180 \cdot \mathrm{deg} & \delta=30 \mathrm{deg}
\end{array}
$$

2. Start the layout by arbitrarily establishing the point O_{4} and from it layoff two lines of equal length, 90 deg apart. Label one B_{1} and the other B_{2}. In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 2.000 in .
3. Layoff a line through B_{1} at an arbitrary angle (but not zero deg). In the solution below, the line is 30 deg to the horizontal.
4. Layoff a line through B_{2} that makes an angle δ with the line in step 3 (60 deg to the horizontal in this case). The intersection of these two lines establishes the point O_{2}.
5. From O_{2} draw an arc that goes through B_{1}. Extend $O_{2} B_{2}$ to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O_{2} as the length of the input crank.

6. For this solution, the link lengths are:

Ground link (1)	$d:=3.0119 \cdot i n$
Crank (2)	$a:=1.0353 \cdot i n$
Coupler (3)	$b:=3.8637 \cdot i n$
Rocker (4)	$c:=2.000 \cdot \mathrm{in}$

PROBLEM 3-67

Statement: Design a fourbar Grashof crank-rocker for 120 degrees of output rocker motion with a quick-return time ratio of 1:2. (See Example 3-9.)

Given: Time ratio $\quad T_{r}:=\frac{1}{2}$
Solution: See figure below for one possible solution. Also see Mathcad file P0367.

1. Determine the crank rotation angles α and β, and the construction angle δ from equations 3.1 and 3.2.

$$
\begin{array}{lll}
& T_{r}=\frac{\alpha}{\beta} & \alpha+\beta=360 \cdot \mathrm{deg} \\
\text { Solving for } \beta, \alpha, \text { and } \delta & \beta:=\frac{360 \cdot d e g}{1+T_{r}} & \beta=240 \mathrm{deg} \\
\alpha:=360 \cdot \mathrm{deg}-\beta & \alpha=120 \mathrm{deg} \\
& \delta:=\beta-180 \cdot \mathrm{deg} & \delta=60 \mathrm{deg}
\end{array}
$$

2. Start the layout by arbitrarily establishing the point O_{4} and from it layoff two lines of equal length, 120 deg apart. Label one B_{1} and the other B_{2}. In the solution below, each line makes an angle of 30 deg with the horizontal and has a length of 2.000 in .
3. Layoff a line through B_{1} at an arbitrary angle (but not zero deg). In the solution below the line is 60 deg to the horizontal.
4. Layoff a line through B_{2} that makes an angle δ with the line in step 3 (120 deg to the horizontal in this case). The intersection of these two lines establishes the point O_{2}.
5. From O_{2} draw an arc that goes through B_{1}. Extend $O_{2} B_{2}$ to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O_{2} as the length of the input crank.

6. For this solution, the link lengths are:

Ground link (1)	$d:=2.000 \cdot \mathrm{in}$	Coupler (3)	$b:=2.9333 \cdot \mathrm{in}$
Crank (2)	$a:=0.5308 \cdot \mathrm{in}$		Rocker (4)

